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been observed to generate light during electrogenerated 
chemiluminescence.10 An important key feature of this new 
chemiluminescent mechanism is the rapid chemical reaction 
of what was a very easily reduced compound to form a strongly 
reducing species within the solvent cage. Return of an electron 
to the radical-cation form of the initial electron donor then 
results in excited-state generation. Preliminary evidence that 
the path leading to light generation occurs within the solvent 
cage comes from the observation of the effect of added trap 
molecules. Thus, saturating the chemiluminescing solution 
with O2 results in only a small decrease in light emission due 
to quenching of the singlet state of the aromatic hydrocarbon. 
Also, the addition of tetramethylethylene does not divert the 
radical-ion intermediates leading to light generation. 

The total yield of electronically excited states for this re­
action should be sensitive to a number of factors such as the 
nature of the hydrocarbon, the rate of decarboxylation, the 
cage lifetime, the solvent polarity, and the excited-state yield 
on back-electron transfer. We have compared the chemilu­
minescence of 1 with perylene to tetramethyldioxetane." 
Preliminary results indicate that for this system the yield of 
photons is MO ± 5%. Thus, even though the reaction has not 
been optimized, the light yield is remarkably high. 

Several previously reported chemiluminescent reactions 
appear to be proceeding by the proposed electron exchange 
machanism. The well-known oxalate ester system is reported 
to be "catalyzed" by aromatic hydrocarbons.13 Chemilumi­
nescence from a-peroxylactones appears to be strongly de­
pendent upon the nature of the aromatic hydrocarbon.14 The 
reaction of phthaloyl peroxide almost certainly proceeds by 
a similar mechanism.15 Our recent report of chemilumines­
cence from a suspected cyclic diacyl peroxide fits this inter­
pretation.16 Chemically initiated electron-exchange lumi­
nescence may be a general phenomenon responsible for many 
chemi- and bioluminescent reactions. Further efforts to unravel 
the details of these chemiluminescent processes and probe the 
generality of this mechanism are underway. 
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Novel Cyclization of Allyldiazomethane 
to S-Methyl-SH-pyrazole1 

Sir: 

Among the large number of intramolecular cyclizations of 
diazoalkenes which afford formal 1,3-dipolar cycloaddition 
products such as pyrazoles or pyrazolines, those of allyldi-
azomethanes are apparently unknown. Allyldiazomethanes 
generally decompose thermally2 or photochemically3 to form 
carbene-type reaction products, or in some case cyclize inter-
molecularly4 rather than intramolecularly. Herein we wish to 
report a novel example of the cyclization of an allyldiazo­
methane derivative through an unprecedented process which 
represents a notable exception to the generally observed re­
action modes. 

When the sodium salt of a-(l,3,5-cycloheptatrien-3-yl)-
acetophenone tosylhydrazone (1, mp 129 0C)5 was decom­
posed in dry diglyme at 145 0C, the reaction mixture imme­
diately turned red as sodium toluenesulfinate was liberated, 
and 10-phenyl-l,l l-diazatricyclo[6.3.0.04-6]undeca-2,8,10-
triene (2, mp 57 0C) was isolated (Scheme I) in 66% yield 
OmaxKBr 3050, 1650, 1554 cm"1; Xmax 277 nm (log e 4.33) in 
cyclohexane; tn/e 222 (M+, 100%), 221, 207, 194, 157, 128, 
104). The 'H NMR spin decoupling and the observance of a 
5% NOE between the exo-C(7)-H and C(9)-H proton provide 
an unequivocal assignment for all the hydrogens of 2. This 
assignment was further supported by the close similarity of its 
13C NMR spectrum6 to that of 1,10-diazatricy-
clo[5.3.0.04'6]deca-2,7,9-triene7 recently reported by Dreiding 
and coworkers (13C NMR spectrum of 2 (0 units in CDCI3), 
C(2), 128.0 (d); C(3), 120.1 (d); C(4), 13.0 (d); C(5), 9.6 (t); 
C(6), 22.1 (d); C(7), 26.7 (t); C(8), 135.4 (s); C(9), 104.5 (d); 
C(IO), 144.9(s)). 
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Table I. Nuclear Magnetic Resonance Spectra" of 2, 6, 7, and 8 

Compd 

2 

6 

7 

8 

C(2) 

6.68 

723 = 9.5 

6.72 

J 21 = 9.3 

6.77 

7 2 3 = 9.0 

6.90 

72 3 = 9.0 

C(3) 

5.53 

734 = 5.3 

5.62 

734 = 7.5 

5.72 

734 = 6.0 

5.80 

734 = 6.0 

C(4) 

1.19 

7 4 5 = 9.0 (exo) 

745 = 4.5 (endo) 

1.40 
745(6x0)* 

745 (endo)* 

1.45 

745 = 8.1 (exo) 
745 = 5.7 (endo) 

4.80 

C(S) 

0.67 (exo), 0.41 (endo) 
7 a b = 4.5 
756 = 7.8 (exo) 
756 = 5.3 (endo) 

0.89 (exo), 0.90 (endo) 

7ab
 = 5.2 

756 = 9.2 (exo) 
756 = 5.7 (endo) 

1.03 (exo), 0.67 (endo) 
7ab = 5.1 
75 6 = 9.0 (exo) 
7s6 = 5.5 (endo) 

2.60 

756 = 5.0 

C(6) 

1.45 
74 6 = 8.6 

2.00 

74 6 = 8.0 

1.96 

74 6 = 8.1 

6.00 

7 6 7 = 12.0 

C(I) 

3.19 (exo), 2.59 (endo) 
7 a b = 15.4 
767 = 3.8 (exo) 
767 = 7.0 (endo) 

5.19 (exo), OH (endo) 
767 = 2.0 (exo) 

OH (exo), 5.08 (endo) 

76 7 = 5.9 (endo) 

6.50 

C(9) 

6.24 

6.65 

6.51 

6.50 

" Chemical shift in 8 units; coupling constant in hertz; solvent, CDCI3. * Coupling constants could not be read clearly. 
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Thermolysis of the isomeric a-(l,3,5-cycloheptatrien-l-
yl)acetophenone tosylhydrazone (4, mp 152 0C), on the other 
hand, afforded two carbene-type products, a-(l,3,5-cyclo-
heptatrien-I-yl)styreneand I-styrylcycloheptatrine in 16 and 
30% yields, respectively. Although no intermediate could be 
isolated from the decomposition of 1, the intermediacy of the 
initially formed diazo compound 3 was substantiated by the 
suppression of the red coloration and the formation of a-
(l,3,5-cycloheptatrien-3-yl)acetophenone hydrazone8 when 
the sodium salt of 1 was decomposed in the presence of tri-
n-butylphosphine.9 The following experiments were carried 
out in order to help elucidate the relationship between the 
structure of 2 and the reaction pathway. Vacuum pyrolysis of 
the dry sodium salt of the dideuterio analogue la was carried 
out at 150 0C (0.05 mmHg) and the product composition was 
found to contain a mixture of dideuterio 2a (54%), 2b (43%), 
and monodeuterio 2c (4%) by 1H NMR analysis. Pyrolysis of 
la in dry diglyme at 145 0C afforded a mixture of 2a (24%), 
2b (22%), and 2c (54%). Similar results were obtained in dry 
toluene at 110 0C where a mixture of 2a (32%), 2b (23%), and 
2c (45%) was obtained. The above results reveal that the 
side-chain hydrogen in 3 must shift to the C(7) position in 2. 
In addition, the formation of a considerable amount of 2c in 
solution suggests that an intermolecular hydrogen abstraction 
via a radical species competes with the intramolecular hy­
drogen shift. This ambiguity was further clarified by the de­
composition of the dry sodium salt of 1 in refluxing carbon 
tetrachloride which afforded four products, 6 (benzoate mp 
134 0C), 7 (benzoate mp 111 0C), 8 (benzoate mp 84 0C), and 
2 in 6, 17, 2, and 9% yields, respectively. The structures of the 
three alcohols were determined by their 1H NMR spectra (see 
Table I) and their formation is best rationalized by the facile 
hydrolysis of the unstable chldride 5 which leads to a cyclo-

propylcarbinyl cation.10 Evidence that the C(7) position is 
substituted both with hydrogen and chlorine atoms and is de­
pendent on the solvent is intriguing and inconsistent with an 
ionic pathway. 

Two intrinsically different pathways, a and b, can be con­
sidered for the formation of 2 (Scheme II). Path a,'' however, 
does not accommodate the formation of the three alcohols (6, 
7, and 8) in carbon tetrachloride. Furthermore, the thermal 
transformation13 of 9 to 10 would be unlikely to occur, con­
sidering the general reaction modes of diazabicyclo[3.1.0]-
hexenes which involve nitrogen extrusion14 to form a carbene 
or a diradical, retro-1,3-dipolar addition15 and isomerization16 

to a pyridazine derivative. The most likely path to account for 
the formation of 2 and 5 as well as the labeling experiments 
involves the formation of a spiro 1,4 diradical 12 (path b) in 
which the two radical centers are located in opposite rings and 
are twisted at nearly 90° and thus are noninteracting.17 Col­
lapse of this diradical in diglyme or toluene results in the for­
mation of 13 either by disproportionation between the two 
radical sites or by an intermolecular hydrogen abstraction. In 
carbon tetrachloride, however, the cyclopropylcarbinyl radical 
function18 abstracts a chlorine atom to form 14. The forma­
tions of 2 and 5 can then be rationalized in terms of the van 
Alphen rearrangement19 of 13 and 14. 

Huisgen20 has pointed out as chemical evidence to rebut the 
Firestone diradical mechanism21 that neither abstraction nor 
disproportionation of an intermediate diradical has been ob­
served in any 1,3 dipole + dipolarophile system. Thus, the 
generation of 12 and its chemical behavior is intriguing in view 
of the reactivity of diazoalkanes as 1,3 dipoles.22 Further 
studies are in progress to establish the generality of this novel 
cyclization. 
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Regiospecific Anodic Cyanation 
of Pyrroles and Indoles 

Sir: 

I wish to report here that pyrrole cyanides are directly 
generated in high yield from pyrroles by an anodic process. The 
results obtained reveal a unique and potentially useful reaction 
which should be general for nitrogen heterocycles. Pyrrole 
cyanides are in general obtained from Mannich bases or al-

Scheme I 

doximes, but most of the reported routes are tedious to carry 
out and of poor yield in some cases.1 

It was at first anticipated that, if the anodic oxidation of 
pyrroles is conducted in methanolic cyanide solution, a 1,4 
addition of cyano and/or methoxy group to pyrrole ring would 
be observed to produce 3-pyrroIines, by analogy with our 
previous results of anodic cyanomethoxylation of 2,5-di-
methylfuran and thiophene.2 However, substitution products 
were exclusively formed. 

The procedure is described for the conversion of 1-methyl-
pyrrole to l-methylpyrrole-2-carbonitrile. The reaction was 
performed at a controlled anode potential of 1.0 V vs. SCE, in 
a divided cell with platinum plate electrodes having an area 
of 8 cm2 and a magnetic stirrer bar in the anode compartment, 
at room temperature, in methanolic sodium cyanide solution 
(organic substrate, 0.4 M; cyanide, 0.8 M). The oxidation was 
terminated after passage of 2 F/mol of added pyrrole. The 
anolyte was worked up by distillation of the methanol. Then, 
saturated aqueous NaCl was added and the mixture extracted 
in ether. The ethereal solution was dried over anhydrous 
magnesium sulfate, filtered, and evaporated, and the residual 
oil was distilled under reduced pressure (bp 101-103 0 C (27 
mmHg)). The distillate consisted of a single component. The 
product was identified by IR, mass, and NMR spectroscopy 
to be l-methylpyrrole-2-carbonitrile, 64% yield. Anal. Calcd 
for C6H6N2: C, 67.90; H, 5.70; N, 26.40. Found: C, 67.94; H, 
5.68; N, 26.40. 

Table I summarizes the results of electrochemical reactions 
using other compounds. All products were identified by the 
elemental and spectroscopic analyses and by comparison with 
the authentic samples prepared by other routes. One major 
advantage of the present reaction lies in its high selectivity with 
regard to the position of attack. VPC of the reaction product 
generally showed a single peak. The product yields from 1-
phenylpyrroles are superior to those from 1-methylpyrroles. 
Cyanation of indoles occurs exclusively on the pyrrole part of 
the indole molecule. The reaction point of 1-methylindole in 
the present nucleophilic substitution is intriguing: electrophilic 
substitution usually occurs at position 3,3 while the present 
anodic cyanation predominantly takes place on position 2. The 
alkyl or aryl group at the 1 position is not attacked. The current 
efficiency for the formation of pyrrole cyanides increases with 
decreasing amounts of passed electricity. Methoxylation, which 
is often observed as side reaction in the anodic oxidation in 
methanolic cyanide solution, was suppressed completely. 
Isocyanation was not observed. 

At the potential adopted only organic substrates are oxidized 
to produce cation radical intermediates.211 If the reaction of the 
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